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ABSTRACT
When researching new product ideas or filing new patents,
inventors need to retrieve all relevant pre-existing know-how
and/or to exploit and enforce patents in their technologi-
cal domain. However, this process is hindered by lack of
richer metadata, which if present, would allow more powerful
concept-based search to complement the current keyword-
based approach. This paper presents our approach to au-
tomatic patent enrichment, tested in large-scale, parallel
experiments on USPTO and EPO documents. It starts
by defining the metadata annotation task and examines its
challenges. The text analysis tools are presented next, in-
cluding details on automatic annotation of sections, refer-
ences and measurements. The key challenges encountered
were dealing with ambiguities and errors in the data; cre-
ation and maintenance of large, domain-independent dic-
tionaries; and building an efficient, robust patent analysis
pipeline, capable of dealing with terabytes of data. The ac-
curacy of automatically created metadata is evaluated aga-
inst a human-annotated gold standard, with results of over
90% on most annotation types.

Categories and Subject Descriptors
H.3.1 [Information Storage And Retrieval]: Content
Analysis and Indexing—Linguistic processing ; I.2.7 [Artificial
Intelligence]: Natural Language Processing—Text analysis

General Terms
Experimentation, Measurement, Performance

Keywords
Patent Enrichment, Information Extraction, Parallel, Large-
Scale, GATE
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1. INTRODUCTION
Patents are an important vehicle for protecting intellec-

tual property and this importance is increasing in the cur-
rent globalised and knowledge based economy. When re-
searching new product ideas or filing new patents, inventors
need to retrieve all relevant pre-existing know-how and/or
exploit and enforce patents in their technological domain.
However, this process is hindered by lack of richer meta-
data, which if present, would allow more powerful concept-
based search to complement the traditional keyword-based
approach.

Semantic annotation is the task of attaching metadata
tags and/or ontology classes to text segments, as a pre-
requisite for knowledge access and retrieval tools and user
interfaces. Automatic annotation is carried out by employ-
ing Information Extraction (IE) [4] techniques, which recog-
nise automatically mentions of a given set of events, entities
or relationships. From an algorithmic perspective, IE ap-
proaches fall in two broad categories: manually engineered
ones (frequently based on pattern-matching like rules) (e.g.,
[13]) and machine learning ones (e.g. [2, 11]). Rule-based
approaches are more suitable where a carefully engineered,
high precision system is needed and there is no sufficient
training data for a machine learning approach to be success-
ful. From an operational perspective, IE tools can be de-
ployed in both fully and semi-automatic applications (where
users can inspect and, if needed, correct the automatically
created metadata). In general, fully automatic methods are
preferred when the volume of data is too large to make hu-
man post-annotation feasible, as is the case with patents.

In particular, patent processing and search require high re-
call methods, capable of operating robustly on large-volumes
of data. Previous research on IE has been carried out mostly
on smaller datasets from narrower domains, mostly news ar-
ticles [12, 2, 7], with accuracy results exceeding 85%. The
new challenge addressed here is in scaling up these methods
to deal with the diversity and volume of patent data, without
sacrificing computational performance and accuracy levels.

Applications of information extraction to patent annota-
tions are quite scarce. [9] mostly focus on OCR and text
classification, while discussing only briefly the importance
and challenges of identifying references to figures and claims
in patents. In this area they have only carried out a small
feasibility study using the Xerox language processing tools,
without providing any evaluation figures or sufficient imple-
mentational details. More recently, the PatExpert project
[16] has developed some content extraction components, ba-



sed on deeper linguistic analysis than the approach proposed
here. The advantages of shallow IE methods such as ours
are that they are more robust in face of language variability
and also scale better in terms of computational efficiency.
The latter objective is particularly important in our case, as
the requirement is to process efficiently terabytes of patents.

This paper presents our shallow IE approach to automatic
patent enrichment, tested in large-scale, parallel processing
experiments on USPTO and EPO documents. Section 2
starts by defining the patent annotation task and examines
its challenges. The information extraction tools are pre-
sented next (Section 3), including details on automatic an-
notation of sections, references and measurements. The key
challenges encountered were dealing with ambiguities and
errors in the data; and creation and maintenance of large,
domain-independent dictionaries. Section 4 is dedicated to
the third, most significant challenge, i.e., building an ef-
ficient, robust patent analysis pipeline, capable of dealing
with terabytes of data. The accuracy of automatically cre-
ated metadata is evaluated against a human-annotated gold
standard, with results of over 90% on most annotation types
(see Section 5). This excellent performance is achievable
due to the relatively constrained, legal sub-language used in
patents, although we did encounter significant differences in
the way American and European patents are phrased and
structured and the literature references and measurement
units are extremely variable. In the end we summarise our
findings and discuss future work.

2. THE PATENT ANNOTATION TASK
The experiments in this paper are based on two kinds of

patents – American (USPTO) and European (EPO) ones.
The reason behind choosing two data sources is because they
differ in terms of already provided metadata as XML tags,
formatting, quality, and legal language used.

The semantic annotation process adds new metadata in
the form of XML tags, which are also mapped to a patent-
specific ontology, encoded in OWL [8]. We chose to support
two different annotation formats to aid interoperability and
also to enable the use of ontology-based semantic query tools
such as KIM [14] and OWLIM [10].

The automatically added metadata falls into two broad
categories: wide and deep annotation types. Wide anno-
tations are intended to cover meta-data types that apply
to patents in general and do not depend on the specific
subject area of the patent (as identified, e.g., by its IPC
code). Examples of such meta-data include document sec-
tions and references to cited literature, examples, figures,
claims, and other patents. Deep annotations are specific to
one or more subject areas and are of interest to specialised
patent searchers. The experiments reported here focus on
automatic annotation of measurements, as they are very im-
portant for patent professionals, while also being very hard
to find using keyword search, due to the diverse ways in
which they are expressed in language.

The benefits from the automatic metadata enrichment
process are three-fold. Firstly, IE is capable of dealing with
variable language patterns and format irregularities much
easier than text-based regular expressions. For example,
references to other patents can be very diverse: U.S. Patent
4,524,128, Korean laid open utility model application No.
1999-007692. Secondly, once we markup the relevant parts
of the patent, the IE tools can also carry out data normal-

isation. Again, taking an example from references to fig-
ures or similarly claims, expressions such as “Figures 1-3” or
“Claims 5-10”imply references not just to the explicitly men-
tioned figure/claim numbers but also to all those in between.
Lastly, by using text mining techniques we are capable to ex-
tract a significantly wider range of useful information and
provide it as additional XML tags in the patent documents.

2.1 Section annotations
Patent documents are typically quite long, contain mul-

tiple required sections, and use highly formalised legal and
technical terminology with the notable exception of litera-
ture references and measurements. Different aspects of the
patent application are typically presented in a pre-defined
set of sections and subsections (e.g. prior art, patent claims,
technical problem addressed and effect). Both USPTO and
EPO documents have at least three main parts, the first
page containing bibliographical data and abstract, the de-
scriptions part, and the claims part.

Automatic section recognition is based on identifying typ-
ical section titles and then partitioning the text automati-
cally based on that. Pre-existing section markup is used,
if available. For instance, BibliographicData, Abstract and
Claims sections tend to be already annotated in patent doc-
uments so we use them directly. As we distinguish about
20 different types of sections, most of these still need to be
detected automatically (the complete list appears in table
4).

2.2 Reference annotations
Reference annotations are used for parts of text that re-

fer to either objects in the current document (e.g. figures,
tables, etc.) or to other documents (e.g. scientific papers).

A reference annotation consists of two parts, a header in-
dicating the type of the reference, and one or more identifiers
which typically consist of a mixture of numbers and letters.
For example, in Figure 1 and 2 the header is Figure and
the identifiers are 1 and 2. In U.S. Pat. No.3,765,999 the
header is U.S. Pat. and the identifier is No.3,765,999.

Conjunctive phrases mentioning references to two or more
objects of the same reference type are tagged initially as
one Reference annotation, including the conjunction and all
punctuation. For example, Figures 1 and 2; Claims 1-3; Ta-
bles 1 to 10 are first annotated as one Reference each, of type
Figure, Claim and Table respectively. The normalisation
step then separates these into their constituency references,
also including all implied references (e.g., to claim 2).

From an IE perspective, some types of references are much
simpler to identify than others. For instance, there is sig-
nificantly less variability in the way patents refer to figures,
tables, claims, equations, and examples. References to other
patents tend to be slightly more challenging, as they often in-
clude the inventor names, patent date, or even title, in addi-
tion to a simple header and identifier. The hardest of all are
references to external sources, such as published papers (e.g.,
Hudson & Hay, Practical Immunology (Blackwell Scientific
Publications, Oxford, UK, 1980), Chapter 8), which tend
to be quite long and typically contain many abbreviations
and idiosyncratic formatting. We have also observed signifi-
cant differences between American and European patents in
this respect and had to adapt the IE tools to deal with that
accordingly.



2.3 Measurements annotations
Most measurements comprise a scalar value followed by a

unit, e.g. 2x10 -7 Torr. Furthermore, two scalar values with
or without unit can be contained in an interval. Sometimes
there are also accompanying words, such as “less than” or
“between”which are important for professional searchers and
are therefore also marked by the IE tools, e.g., “less than
about 0.0015 mm”, “2 x 10 5 to 2 x 10 7 cpm/ml”. Lastly,
we also deal with relative measurements, such as percentages
and ratios.

The main challenge in recognising measurements in pate-
nts comes from the large number of measurement units in ex-
istence (e.g., units used in physics patents are very different
to those used in engineering ones). Another challenge is that
some units have single letter abbreviations, which introduce
ambiguities in many cases and therefore the wider context
needs to be considered in order to determine, whether the
sequence of numbers followed by a letter is indeed a mea-
surement. One frequently encountered example are tem-
peratures, e.g., “1C” where we need to distinguish correct
temperature mentions from other cases, such as references
to figures, examples, tables, etc. (as in “see Figure 1C”).

3. OUR APPROACH

3.1 IE tools
We have developed our information extraction system us-

ing GATE1 [5]. GATE, the General Architecture for Text
Engineering, is a framework providing support for a vari-
ety of language engineering tasks. It includes a vanilla in-
formation extraction system, ANNIE, and a large number
of plugins for various tasks and applications, such as on-
tology support, information retrieval, support for different
languages, WordNet, machine learning algorithms, and so
on. The processing resources we use from ANNIE are as
follows: tokeniser, gazetteer and finite state transduction
grammars. The resources communicate via GATE’s anno-
tation API, which is a directed graph of arcs bearing arbi-
trary feature/value data, and nodes rooting this data into
document content (in this case text).

The tokeniser splits text into simple tokens, such as num-
bers, punctuation, symbols, and words of different types
(e.g. with an initial capital, all upper case, etc.), adding
a “Token” annotation to each. It does not need to be modi-
fied for different applications or text types.

Our application developed its own, patent-specific gaze-
tteers (list of expressions) that aid the recognition of mea-
surements and references (see below). The lists are compiled
into finite state machines, which can match text tokens.

The semantic tagger (or JAPE transducer) consists of
hand-crafted rules written in the JAPE pattern language
[6], which describe patterns to be matched and annotations
to be created. Patterns can be specified by describing a
specific text string or annotation (e.g. those created by the
tokeniser, gazetteer, document format analysis, etc.).

3.2 Building the Gazetteers
Rule-based IE systems comprise of a set of grammar rules

based on some patterns and clue words. For example to
locate a reference to a table, one could use the clue word

1Gate is freely available for download from
http://gate.ac.uk/

table followed by a number. The idea of using gazetteers
is to annotate such clue words in the text with all their
inflections.

One approach is to use a set of hand-annotated examples
to derive such lists, however this requires a thorough corpus
analysis. This is the approach we used to build gazetteers for
locating the references, based on the gold standard corpus
(see Section 5.1). The reference gazetteers are rather small
in size, 314 elements in total, and contain clue words such
as Figure, Table and Example to name a few. They also
contain entries such as described in or Patent application
no. to help locate literature and patent references.

In case of measurements, a database2 containing more
than 30K entries was used to automatically populate a gaz-
etteer list. The database also contains transformation rules
for transforming one measurement value into another (e.g.,
inches to cm). Since a gazetteer is simply a list of entries, the
information about transforming rules has been populated in
an ontology. These rules will be used for answering semantic
queries by transforming values in one measurement unit into
the other on the fly.

3.3 Creating the Annotation Rules
A typical JAPE rule consists of two parts: left hand side

(LHS) and right hand side (RHS). LHS consists of an anno-
tation pattern that should be matched in the text and RHS
declares the action that should be taken when the pattern
specified in LHS is found in the document. An example of
such a pattern is given below:

Rule: FindANumberFollowedByAUnit

(

{Number}

{MeasurementUnit}

):match

-->

:match.Measurement = {}

The pattern, specified above, will try to locate a sequence
of annotations where the first annotation is of type Number
and the next annotations is of type MeasurementUnit – the
latter being created on the basis of the measurement unit
gazetteer. If such a pattern is found, the entire sequence is
annotated as the Measurement annotation. In total, the ap-
plication has over 30 JAPE rules that identify measurement
units in the text. These include identification of complex
equations and intervals of measurements as well.

The process of identifying sections and locating various
references in the text consists of executing similar rules over
the text. Annotations produced by other processing re-
sources such as the gazetteers are used in the rules.

Similar techniques are used along with the annotations
produced by various gazetteer lists to identify annotations
of type Reference. Each reference is then classified into a
subtype such as Figure, Formula or Table. Unlike these
references where the used keywords are part of the actual
reference tag, contextual information is needed for patent
and literature references. For example a reference to a lit-
erature can have keywords such as described in or according
to in their left contexts. Below we give an example of such
a pattern:

2http://www.gnu.org/software/units



Table 1: Application pipeline.
Phase Gate processing resource

1 Section Finder
2 English Tokeniser
3 Patent-specific gazetteer
4 Reference Finder
5 Measurements Finder

Rule: Patent

(

{PatentContext}

({PatStart}{PatentNumber}):match

):match-with-context

-->

:match.Patent = {}

Given this pattern, it will match with the string such as
described in U.S. Patent 4,524,128, where described in, U.S.
Patent and 4,524,128 are annotated as PatentContext, Pat-
Start and PatentNumber respectively. However, only the
part that matches with ({PatStart}{PatentNumber}) is an-
notated as the Patent reference.

The application has over 30 JAPE rules that identify mea-
surement units in the text. This include identification of
complex equations and intervals of measurements as well.
As explained in the previous subsection, the measurement
gazetteer is used for identifying measurement units in the
text. For example, the following pattern would annotate
the text such as 40-50mph where 40 and 50 are the two
numbers and mph is the measurement unit.

Rule: MeasurementInterval

(

{Number}

{Token.string == "-"}

{Number}

{Unit}

):span

-->

:span.Measurement = { type = "interval" }

3.4 The Application
The application pipeline consists of a number of processing

resources that are executed sequentially, where some compo-
nents rely on the output of earlier ones. An example of this
is the Reference finder resource that depends on the output
of the gazetteer. Table 1 lists the resources in their order of
execution in our application.

The pipeline is executed on one document at a time. Fig-
ure 1 shows an example of a processed document.

4. LARGE-SCALE EFFICIENCY TRIALS

4.1 Experiments
One of the most challenging tasks of any IE application is

to adapt it to process a large amount of data without com-
promising on quality or performance. The main purpose
of carrying out these experiments was to develop a highly
optimised and equally accurate application that can exploit
the hardware at its best. This is achieved by benchmark-
ing the individual resources used in the application and by

Table 2: Baseline Experiments.
Patent No of KB/Sec Time/Document
Type Processes USPTO or EPO

USPTO 1 8.06 10.54s
USPTO 4 29.95 2.84s
USPTO 8 53.15 1.60s
EPO 1 6.56 4.45s
EPO 4 27.41 1.08s
EPO 8 47.12 0.62s

identifying those that need optimisation. In this section, we
describe how we achieve this. We first describe the setup
of our experiments, followed by some baseline results and
some details on optimisation. Finally, we compare the base-
line results with the optimised application results.

The main purpose of the application is to consistently
process large amount of patent data and produce metadata
in the form of patent-specific annotations (i.e. sections,
references and measurements) and other linguistic annota-
tions (such as tokens, sentences etc.). In order to evaluate
the consistency in the application’s performance on a large
dataset, experiments were carried out on a corpus consist-
ing of 1.3 million USPTO (108GB) and 27 thousand EPO
(780MB) documents in XML format with few attributes on
each markup. The average sizes of USPTO and EPO docu-
ments were 85KB and 29.21KB respectively.

Our experiments were carried out on the IRF’s Large Data
Collier (LDC)3. This is an SGI Altix 4700 system comprising
20 processing nodes each with four 1.4GHz Itanium proces-
sor cores and 18GB RAM. The nodes are connected using
SGI’s high speed NUMAlink interconnect technology, allow-
ing the whole cluster to appear as a single shared-memory
system with a total of 80 processor cores and 360GB of main
memory. Storage is provided via a fibre channel SAN.

In this environment, experiments were run with different
numbers of processes running simultaneously. Table 2 gives
details on the baseline experiments.

As shown in the table, the application was able to pro-
cess 8.06KB per second when executed in a single process.
In other words, it took a process 10.54 seconds to process
a single USPTO document with an average size of 85KB.
Whereas processing rates of 29.95 KB/Sec and 53.15 KB/Sec
were observed for 4 and 8 parallel processes respectively.
Even though the number of processes were increased to 4
and 8, the processing rate did not increase with the multi-
plication of the number of processes. Similar results can be
seen for the EPO documents. The time taken to process one
EPO document is bit less than the half of the time taken to
process one USPTO document. The same is also true for
the average sizes of USPTO and EPO documents. This in-
dicates that the processing rate is linear as the size of the
patent documents grows (see figure 2).

It was also a part of these experiments to benchmark the
individual processing resources and report their data pro-
cessing rates and their share in the overall time taken by
the entire application. As specified earlier, the motive was
to identify components which needed further optimisation.
Having obtained results on 8 parallel processes, the interim
changes were instantly applied to remove linguistic compo-

3http://www.ir-facility.org/the irf/semantic-
supercomputing



Figure 1: Annotated patent document in GATE GUI.

Figure 2: Baseline Results.

nents that were identified as expensive and did not have
significant impact on the overall results, such as, ANNIE’s
morphological analyser and named entity recogniser. Al-
though this resulted in a slightly reduced number of linguis-
tic annotations, it did not affect the automatic processing of
patent-specific annotations. As a result, when the same ex-
periment was performed with 12 parallel processes, the pro-
cessing rate of 110.03 KB/Sec was achieved which is slightly
less than double the processing rate for 8 parallel processes.
Similarly the time taken to process one document decreased
from 1.60 seconds to 0.77 seconds per document.

The patent processing application contains several linguis-
tic components that depend on the output of the previ-
ous stages. One such example is the grammar that iden-
tifies measurement units, which requires word boundaries
to be already annotated by the tokeniser. The benchmark-
ing tool was also used to identify expensive resources, which
are needed by subsequent grammars. Such resources were
then either optimised or completely removed after refactor-
ing the depending grammars. For example, instead of using
a morphological analyser, the rules were instead modified to
match all word forms under consideration.

Having thus optimised the application, the experiments
on all 1.3 million documents were repeated to collect new
benchmark results. Table 3 shows a comparison between the

Figure 3: Baseline Vs Optimised.

Table 3: Baseline Vs Optimised Application.
No of KB/seconds seconds/Doc

processes Baseline Optimised Baseline Optimised

1 8.06 20.7 10.54 4.11
4 29.95 73.86 2.84 1.15
8 53.15 144.44 1.6 0.59
12 110.03 203.76 0.77 0.42

baseline results and the results obtained for the optimised
application. Figure 3 explains these results through graphs.

As shown in table 3, the processing rates for 1, 4 and 8
parallel processes are almost 2.5 times higher, whereas with
12 processes the optimised application performes 1.8 times
better. This is most likely due to the fact that the entire
LDC system is a cluster of nodes where the memory and
input/output operations are being shared among the pro-
cessor nodes. With 12 processes (in comparison to the fewer
8 processes), this means further segregation of the shared
LDC resources.

After automatic annotation the 1.3 million documents re-
quire around 139 GB when stored as stand-off XML files
plus content text files. The average file size is 85 KB before
and 113 KB (standoff and content) after processing.

Finally, to summarise the results, the baseline application



took 264 hours (11 days) to process 1.3 million USPTO doc-
uments at the processing rate of 110.03 KB/Sec, whereas the
optimised application took 142 hours (5.92 days) to process
the same number of documents at a processing rate of 203.76
KB/Sec. Given that the hardware has 80 processor nodes
in total, the overall speed can be improved even further.

In order to be able to estimate the number of annotations
that the application produces per document, 20 documents
(both from the USPTO and EPO documents) were obtained
at random. These contained 147 section annotations, 604
measurements, 1,351 references and 150,140 linguistic anno-
tations. Based on these results, it would be reasonable to
estimate that each document in our corpus contains an av-
erage of 105 end-user (patent specific) annotations and 7507
linguistic annotations.

5. ACCURACY EVALUATION

5.1 Gold standard
Patent documents typically contain one or more IPC codes

indicating the nature of the invention, so we used these codes
to select patents relating to particular technology categories.
We selected the patents from two very different fields, me-
chanical engineering and biomedical technology, to better
examine the diversity in the data.

We manually annotated some USPTO documents and EPO
documents in several iterations, in order to test the anno-
tation user interface, refine the annotation definitions, and
evaluate the automatic processing. The evaluation corpus
used in this paper consists of 23 USPTO and 28 EPO doc-
uments. The reason behind annotating more EPO than
USPTO documents is that the latter tend to be more uni-
form in terms of formatting, language used, sectioning, etc.

We consider that a corpus of 51 documents, 376,713 words
or 2,490,666 characters is big enough to test our system. For
the section annotations, in addition we also extracted all
heading annotations from the 1.3 millions documents and
checked that the most frequent ones are found by our system.

In order to ensure more consistent gold standard data,
manual annotation was carried out in two passes. First two
annotators would markup each patent documents indepen-
dently and then an expert checked the two sets and corrected
any disagreements and missed annotations. In total, more
than 10 different human annotators were involved. Through-
out the process we also controlled the inter-annotator agree-
ment, which ensures good quality of the human-annotated
data.

5.2 Results on the Gold Standard
Accuracy evaluation is an essential part of the develop-

ment of information extraction applications and is carried
out by comparing the annotations produced by the auto-
matic system against those in the gold standard.

The reported results make use of traditional evaluation
metrics for information extraction [3]: precision, recall, and
F-measure. Precision measures the number of correctly iden-
tified items as a percentage of the number of items identified.
It measures how many of the items that the system identified
were actually correct, regardless of whether it also failed to
retrieve correct items. The higher the precision, the better
the system is at ensuring that what is identified is correct.
Recall measures the number of correctly identified items as
a percentage of the total number of correct items measuring

Table 4: Corpus statistics. USPTO contains 23 doc-
uments and EPO contains 28 documents.

Annotation type USPTO EPO

Section.Abstract 23 28
S.BackgroundArt 19 22
S.BestMode 2 5
S.BibliographicData 23 28
S.Bibliography 0 8
S.Claims 23 0
S.CrossReferenceToR.A. 6 1
S.DetailedDescription 11 18
S.DisclosureOfInvention 3 6
S.DrawingDescription 16 20
S.Effects 1 2
S.Examples 17 25
S.PreferredEmbodiment 10 7
S.PriorArt 4 6
S.Sponsorship 2 0
S.SummaryOfTheInvent. 20 18
S.TechnicalField 14 17
S.UsageOfInvention 1 6
Annotations/Doc 8.5 8

Reference.Claim 352 2
R.Example 99 264
R.Figure 375 570
R.Formula 79 66
R.Literature 114 488
R.Patent 92 182
R.Table 59 105
Annotations/Doc 51 60
Annotations/1000 Char 1.4 1

M.scalarValue 1998 3409
Measurement.unit 1613 2994
M.interval 432 375
Annotations/Doc 176 242
Annotations/1000 Char 4.9 4

Characters 827,294 1,663,372
per document 35,969 59,406

how many of the items that should have been identified ac-
tually were identified. The higher the recall rate, the better
the system is at not missing correct items. The F-measure
[15] is often used in conjunction with Precision and Recall,
as a weighted average of the two – usually an application
requires a balance between Precision and Recall.

Overall, the evaluation figures obtained are above 85%,
which makes them suitable for immediate deployment and
use in end-user applications (see Table 5). The main ex-
ception are references to other patents and external publi-
cations/literature, where the results are not yet final, as the
rules are still under development. Concerning the recogni-
tion of measurement intervals in the 28 EPO documents, the
lower results can be explained by their more versatile forms
that are not easy to generalise.

In the case of measurements, for comparison’s sake, the
highest results obtained in the Matrixware TempRanger ex-



periment4 were 75.51% precision and 88.48% recall, while
only identifying temperature expressions. Therefore, our
measurement grammars not only achieve higher performance,
but it also captures a much wider range of measurements.

Table 5: Evaluation figures per annotation type on
the USPTO 23 documents and EPO 28 documents
gold standard for micro-averaged precision, recall
and F1-score.

Annotation type USPTO EPO
P. R. F1 P. R. F1

S.BackgroundArt 74 74 74 56 68 61
S.DrawingDescr. 75 75 75 84 80 82
Section.Examples 65 65 65 61 56 58
S.SummaryOf. 89 80 84 83 83 83
S.TechnicalField 80 57 67 94 94 94

Reference.Claim 100 100 100 100 100 100
R.Example 97 100 99 100 99 99
R.Figure 99 99 99 99 98 98
R.Formula 99 99 99 100 100 100
R.Literature 69 75 72 70 74 72
R.Patent 76 77 77 72 84 78
R.Table 100 98 99 100 100 100

M.scalarValue 96 93 94 94 92 93
Measurement.unit 95 92 93 94 93 93
M.interval 93 92 93 82 81 82

5.3 Comparison against Pre-Existing Markup
There is some pre-existing markup for some kinds of ref-

erences and sections in the USPTO documents (there is
no such markup in the EPO documents that we have at
present). This enabled us to also compare our automati-
cally created annotations against those already in the data.

At present, there is pre-existing markup only for two kinds
of references, those to figures and claims, therefore these are
the only ones we can compare on. Table 6 presents the pre-
cision, recall and F1 results, when the pre-existing markup
is used as a gold standard. It can be seen that most pre-
existing references to figures and claims are identical to those
obtained by our grammars, in particular for the claim refer-
ence. However, there are quite a few different annotations
between the two for figure references.

Through manual inspection, we found that figure refer-
ences are more complicated than that for claim references.
While most pre-existing annotations are correct for the sim-
pler cases, e.g., “FIG. 1” and “FIG. 5A”, there are many
mistakes for more complex references such as “FIGS. 5A to
5 D” (only “FIGS. 5A” is tagged while 5D is missed), “FIGS.
4B, a device” (tagged wrongly as “FIGS. 4B, a”), and “FIG.
4 a” (only “FIG. 4” is tagged). In contrast, our grammars
produced the correct annotations in such cases. There are
also slight differences in the way conjunctions are tagged,
where pre-existing and automatically produced annotations
differ slightly, consequently lowering the accuracy results.

To summarise, for reference identification it is better to
rely entirely on those produced by our system, because on

4These unpublished results were provided to us in email
communication with Matrixware staff.

one hand, there are mistakes and inconsistencies in the pre-
existing markup, and on the other, the claim and figure
references produced by our system are very reliable (see the
respective precision and recall in Table 5.

Table 6: Comparing the pre-processing results (as
the key set) with those in the original markups (as
the response set) for the two types of reference on
the 23 USPTO documents: the micro-average over
the two sets of documents for the F-measures (Pre-
cision, Recall, F1) for each reference type.

Annotation type Precision Recall F1
Reference.Claim 95 97 96
Reference.Figure 91 87 88

We also carried out a similar analysis of the section tags.
There the pre-existing markup covers section types such
as cross-reference-to-related-applications, summary-of-inve-
ntion and detailed-description. We found that the first one
is quite reliable but the other two are less so. For exam-
ple, one detailed-description annotation covers also the sec-
tion “BEST MODE FOR CARRYING OUT THE INVEN-
TION”, while another one covers not only the correct sec-
tion “DETAILED DESCRIPTION OF THE INVENTION”
but also the examples section. Yet another example is a
summary-of-invention annotation covering the sections for
technical field, background and summary. While this might
not be problematic for some applications, our goal is to pro-
vide as detailed and fine grained section identification as
possible, in order to enable users to search only within the
desired parts. Consequently, our automatic approach cur-
rently uses only the cross-reference-to-related-applications
tags, plus the annotations for the sections containing bibli-
ographic data, abstract, and claims.

6. CONCLUSION
This paper presented a large-scale, parallel IE system to

automatically annotate USPTO and EPO documents with
relevant new metadata, in order to enable richer searches by
inventors and companies. This system has been tested on
a 1.3 million documents corpus (more than 100 GB) with
12 parallel processes and achieves in its optimised version a
data rate of 200 KB/seconds or less than 6 days of process-
ing. Processing is highly parallelisable and the overall time
can be reduced further by using more servers.

Our system supports not only batch-mode automatic an-
notation but can also be used with an interface to check/corr-
ect the annotations and to search using the newly generated
tags. Notably, ANNIC [1] a tool present in GATE, allows us
to input semantic queries such as Find all length measure-
ments. We are in the process of extending the possibilities
to queries like Find a measurement greater than 10 cm or
Find a measurement in the description section. We already
have an ontology of units that is linked to the measurement
annotations, which will allow us to normalise all measure-
ments in order to make semantic queries a lot more efficient
and also independent of the measurement unit used (e.g., a
query for inches can retrieve patents with units in cm).

Our system can also be deployed with a web interface that
allows a large number of annotators to correct the automatic



annotations. This is done in order to create a gold standard
that will be used for machine learning and also to allow fur-
ther evaluation of the rule-based processing components. As
machine learning IE applications can be deployed only when
sufficient data has been annotated, this has not been possi-
ble without first developing the rule-based system describe
in this paper. Another strand of our future work will be
to create an efficient machine learning system to improve
further the precision and recall on all annotation types and
introduce new ones.
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